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ON THE THEORY OF CURVILINEAR TIMOSHENKO-TYPE RODS”

V.L. BERDICHEVSKII and L.A. STAROSEL'SKII

An asymptotically exact theory of isotropic Timoshenko-type rods is
developed. The variational problem is formulated for the cross-section
in order to calculate the transverse shear coefficients. Shear coeffic-
ients are obtained for a series of transverse cross-sections.

1, One-dimensional theory of rods. 1In classical theory a rod is modelled by a
curve T'with a set of orthogonal reference vectors attached at each point, with one vector of
each set tangential to I'. The theory allows for four functionally independent degrees of
freedom: three components r' () of the radius vector of the points on I (the small latin
letters 1,7,k take the values 1,2,3 and correspond to the projections on the Cartesian axes
of the observer coordinate system, and t is a parameter on I') and six components of the
reference vectors 1:“" orthogonal to I' (the small greek letters take the values 1,2)connected
by the following five relations:

10 Tis = Basy Tair«', :=0 (1.1)

where 0,3 are the Kronecker deltas and the comma preceding f in the subscripts denotes differ-
entiation with respect to }. The degree of freedom which exists when the set of reference
vectors is defined, describes the relative rotation of the transverse cross-section. The
curvatures e, and torsion o of the rod are given by the relations

o= — 00T, Th, s =gt + oedt’
where T' denotes the unit vectar tangent to I', s is the arc length along I' , and the comma pre-

ceding sin the subscripts denotes differentiation with respect to s. The following quantit-
ies can be taken as the measures of the elongation, bending and torsion:

vt i— 1) Qam (1 200 — 0"
Q=(1+2y)"0—0°
The superscript © denotes quantities in the undeformed state, and we use the arc length on the

curve Ty as the parameter . The formulas for y,82 and Q are written in terms of 7o' (§)
and r'(f) as follows:

i 1
b =% (rf it — 1), Qa=rf tTia, § — e Q= Te“ﬂt;' T —° (1.2)

The variational equation of the one-dimensional theory of rods has the form

LRl 11 |y}
8( § (k—@ydzar+ 6§ § adear=0 (1.3)
i 0

e 0

where | Ty | is the rod arc length in the undeformed state, X and @ are the kinetic and inter-
nal energy density per unit length, A is the work done by external forces, and r* and ‘re,,‘, are
the functions varied and obeying the relations (1.1).

In the classical theory of isotropic inhomogeneous rods (with centrally symmetric cross-
section and even elastic properties) we have

20 = (E) 7 + (EREPy Q,Qp + CO? (1.4)
i
2K = (pr,'ri,t + OB Te, 1T, 1
Here (:) denotes the integral over the transverse cross-section, e are the Cartesian co-
ordinates in the transverse cross-section, E is Young's modulus and p is the density of the
material. To compute the torsional rigidity C we must solve the Saint-Venant problem at the

cross-section (p is the shear modulus and the comma preceding the greek subscripts denotes
differentiation with respect to &%)
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Here ey, are the Levi-Civita symbols (g; = ey = 0, e, = —e, = 1).

ol 11 {1 A war o+ a2d f£4 hamam oo amia

ormulas {(1.4) were obtained for a aomogeneous rod from the K 10f £ uyputneb).b on pJ.::ultf
flows /1/. They can be obtained by an asymptotic analysis of a three—dlmen51onal energy funct-
ional, retaining in the expression for the energy the principal terms only and neglecting
corrections of the order of &/R, A/l and e compared with unity /2/ where h is the diameter of
transverse cross~section, R is the characteristic radius of torsional curvature, ! is the
characteristic scale of change in the stress state along the rod and ¢ is the deformation
amplitude (the quantities R,i,e are defined in /2/). Below we construct a more accurate
theory;, in which the expression for the energy retains corrections of the order of Ah/R, h/l and
(h/l}* compared with unity.

In the improved theory the vectors 1,. are not assumed to be orthogonal to the vector
v and two additional degrees of freedom are introduced, namely the transverse shear ¢a:='ﬂrw
(this idea is due to S.P. Timoshenko /3/). The vectors 1,' are of unit length and mutally
orthogonalhatw = 8gg)just as in the classical theory. The measures of flexure and torsion are
found in terms of the vectorsr (E), 7o' (§) by means of the formulas (1.2). The internal energy
density contains, in the improved theory, apart from the classical terms, the cross terms con-
necting the elongation with torsion, elongation with flexure, flexure with torsion and shear
energy

20 = (EY v + CEEED QuQp + CQF + 2 [CEEL> — (1.6)

2(1 + v) Cl @yQ — 2 CEEER VT,/C 0y e 2R — 2D%00,°yQp + J%¥gupp

The cross term connecting the elongation with torsion exists only for naturally twisted
rods (o° % 0) and was first computed in /4/, while in /5/ it was obtained from the asymptotic

ranresentations The cuantity EEat \ 214 L u\ O characterizing the interaction between the

representatiionse. <@ quantity (Lg¥se, — < (1 = v { characierizing 1ne 1nteractilion between tae

elongation and torsion is computed from the moduli of rigidity of the classical theory (£§*g8>
and ¢ . In contrast, the effect of transverse shear is connected with three conditiocnal indep-
mamAnari mhava~tavriabiae AF o ~A mamalyy widh Flha ahaoaar wirddAiddan T(lﬂ BalAaw o ah s oo
endent characteristics ¢f the rod, namely witn e snear rigidities v*P, DeillW we Sinow waac

the latter are obtained from the solution of the following variational problem at the cross-
section:

r1

Jobpapy = inf, {p (@ + z,.a) (9= + 2,50 (1

The minimum in (1.7) is sought over all functions z (§%) satisfying the restriction
(uzt® = 0, pa are regarded as constant parameters. The transverse shear coefficients Kaf =
JaBi{p> are, as a rule, of the order of unity, and the shear energy J®gp.ps represents formally
the principal part of the energy. Therefore, in the first step of the variaticnal-asymptotic
method /6/ we must minimize the shear energy in accordance with the hypothesis of plane flows
¢e = 0 also in the first approximation. However, cases are possible (one such case is discus-
ed below) when K®*# <1, and the theory derived below, regarded as improved, becomes a first
pro

poroxXximation theorvy

v W0

Ximation Thecry.

The rods which are curvilinear in the undeformed state are characterized by another five
parameters, i.e. four components of the non-symmetric tensor D9 and scalar C,, connected with
the cross relation between the elongation and flexure, and flexure and torsion. To find pDef

we must obtain the coefficients of the quadratic form Jebg.ps + B%P@.0p + C*P8,.0; representing the
minimum value of the functional

<}‘ (Z a+ Pa — ; /(a.vev) (Z.a + * — % X““eo)> (1.8)
Yad = 2 (B9, — CUEEG/ ) — (Y — CUBEYD / (i) 6.8

Here ¢, and 6, are constant parameters and y,# are quadratic polynomials. The minimum is
sought over all z satisfying the restriction {uzE*> = 0. The tensor D%F is determined in terms
of the coefficients of the quadratic form Jet, Be# (2B from the formulas

~aR PP N NS - 721 rr-B ]; r(~1) an (4 a
D7 = (& + V)KLE™C") T (L£)M g ="/vay O =" Aa? (1.9)

M = Yy CEREDT (C1 — U JGPBUBR), N2 = 1y (EGE)™
(sz — 1/ J"T’B‘”BB“\ M2 o= A2 = (EE L0 (012 1/4]5{&)30;1352)
where J&P is a tensor imverse toJ“NJ“” = 8,).To find the scalar (,, we must solve the
problem of the minimum of the functional

Ch (2.0 + 2vg)F + 21 (2, py + VOapg) (2= B 4 vOBg) — (1.10)
2u (g_.on + evagv) %)
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where 9§ is the smallest element in the problem of torsion (1.5). The minimum is sought over

all z* satisfying the restriction (3.3). Let us denote the minimum value of the functional
(1.10) by J. Then C, is given by the formula
€, =<EgH +J (1.1

Just as in the case of shells /7, 8/, the cross term connecting the elongation with flex-
ure can be essential in determining the displacements to a first approximation. Formulas
(1.6)—(1.11) are obtained assuming that only the shear modulus changes in transverse direct-
ions and Poisson's ratio is constant. Note that the asymptotic theory of rods, with trans-
verse shear taken into account, was also constructed in /9/.

2. The three-dimensional problem. we consider, in the Cartesian z' coordinate
system, an elastic isotropic rod occupying in its undeformed state a volume V, formed by the
motion along the rod axis T, of a plane figure § perpendicular to I'y at every point of the
axis. The centre of gravity of S lies on the rod axis. The rod is acted upon by the time-
dependent surface forces P; and mass forces F;which are assumed to be dead. Let us introduce
in the volume ¥V, an associated coordinate system &%, ¥ =% according to the formulas

2% (8, &%) = 1% () + o (F) &= (2.1)
Here z% = r (§) is the equation of the rod axis, Ty, £ is the arc length along the axis,

7,% and 1% are the components of two vectors which form, together with = r® an ortho-
gonal set of vectors. We assume that S is centrally symmetric. This means that in addition
to every point with coordinates E* it contains a point with coordinates (2. The distribution
of the inhomogeneities over the cross-section will aso be assumed symmetric (i.e. Young's
modulus E (%) and shear modulus p (§*) are even functions of the coordinates E*) and Poisson's
ratio v will be assumed constant.
The equations describing the deformation of the rod follow from the variational equation
t 1T
8§ ~rydi=0, 1= Ayea (2.2)
i 0
1T

L= ((Fa' VB + (Pi'os) dE + (Pia'y i
0

1 2 0 1 o N
A= [ (8™ 0b)? + 2p8°°°8" Ceoctpa) — - pU'v;, g7 =det [ g" |

Here (.>;s denotes the integral over the boundary of S, 7' (E%, t) is the law of motion of the
body, v' = z4, A is the difference between the internal and kinetic energy, L is a functional

determining the work done by external mass and surface forces, and g,°, g’ are components of
the metric tensor. The components of the strain tensor are determined from the law of motion
using the formula

1 .
eab=T(z:aZi, v~ Eab) (2.3)

The problem in question reduces to replacing the three-dimensional problem of the theory of
elasticity by the appropriate "one-dimensional" problem containing the functions of the long-
itudinal coordinate t and time ¢t only. The one-dimensional theory can be regarded as a
result of the passage to the limit h— 0. We will construct the one-dimensional theory using
the variational-asymptotic method /6/.

3. Asymptotic analysis of the three-dimensional problem. Transformation of
the expression for the energy. We will write U in the form of a sum of three positive definite
quadratic forms, i.e. the longitudinal energy Uy, the transverse energy U, and the shear
energy U,

U=Uy+ U, + Usc
Uy=")E 5" U, =1/,E°® (egg + Eqpess + Eggeqs) (o B—>:6)
U< ="/s6 (€as + Eotas) (@ —B)

The symbol (a, B — v, 8) describes the expression within the preceding brackets in which the sub-
scripts @, B have been replaced by v,8. The components of the "two-dimensional" tensors of
elastic moduli are expressed in terms of the metric tensor components, Lamé paraemters A,
and Poisson's ratio w

avts Dg""’g'”g""

on 1
EU=4P'LE'+2P'(V—1)‘_°T_4P' -
b b Baecpeys | 776 - (2lga” — £ 6"V | 5780
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% = du[g"g ™ + (2/gs’ — g°) g'8], Efg—— = Gl
Ey= *anfop 8
o, 1 ]
Ba’erglys lf"x 5 2k — ) g “'] ghe
BB = 1g"0g™ + p (g"e7g"80 + g"bvg"at)
—Y g 1= ‘
Lap= 833° 8ap + [

Remembering that the metric tensor components are given in the §® coordinate system by the
formulas

)

Basds

g3’ = (1 + 0B + 0" Ea8% g =(1 + 0aT*)?
Bas = epafP .

g3 =0’egB (1 + o)™ gop=10an

g8 = Bap + 07 (Baphyh? — Labp) (1 + B
g°=det | g | = (1 + 0s%F%)

and neglecting terms of the order of (h/R)® compared with unity, we obtain the following ex-
pressions for the components of the two-dimensional elastic moduli:

E =E(1 —4a,8), E* = B3 —38%P8% <.
w (87765 + 6P75%%)

Eqp =05 (1 —20y8Y), GoF = 4uded(1 — 20,%Y)

Egg =200t Eq = 0°eqgl®

External forces.
We will assume that the external surface and mass forces are of the order of

Pi=0(%pe>, Fi=0(+pe>
and the mass forces F; are constant over the cross-section S.

Let us assume that the relation P;(§*) at the end faces can be written in the form P; =
p {C; + Ciat*)where C;, Ciq = const.We begin the asymptotic analysis of the three-dimensional problen
by considering the static case.

First approximation. As was shown in /10/, the law of motion to a first approximation
has the form

2 €28 =r'@) - e + by, [2=h"1E (3.1)
i R i
ya=rayi=—v(<:av~‘r-—2-xaﬂhﬁs), y=1  yi=ght
where g is the minimizing element in the variational problem (1.5). Substituting (3.1) into
the expression for the energy and integrating over the transverse cross-section, we obtain
the formula for ¢ (l.4). Subsequent terms of the expansion (3.1) are of the order of eh/l

and made only a small contribution to the energy.

Second approximation. In accordance with the general scheme of the variational-asymptotic
method we write the law of motion in the form

£ Q) = 4 ki + by ke, Y =Ty 4+ LY (3.2)

The arbitrariness in the choice of r and 1, makes it possible to impose the following restri-
ctions on z':

uzd> = 0, {uzgp) e =0, {uzl* =0 (2o = 1ot 2, 2 = T'z) (3.3)
where the symbol |f denotes differentiation with respect to {P . Let us substitute (3.2) in-
to the expression for the strain tensor components (2.3). Neglecting guantities of the order
of h®*/ Rl and ¢ compared with unity, we obtain

eas = /2 (27 + 2AQ,L* 4 2h%0, QP + 2h2°RLLT + 2ht'y; ¢+ 2hT'zi, g) (3.4)

Eaa ="/2 (AR (g1 + TPeya) + P + ALITy, i + Fa + ALV, eZija + BY (Tia + AT Ti sl a8 = Yiait) + Zuip)
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Let us separate, from the energy functional, the terms containing z and 2z, , principal in the
asymptotic sense. By (3.4) the terms have the form
CET (2o s + v0apgh?R, 1) (o B — v, 8) — pA, ¢ (81a + (3.5)
Dey) 2% + 1/a16% (2(a -+ Qu + Ay, §) (2 — B> —
(P (1‘2 -+ Talza)>as
Let us carry out the following substitution of the function sought:

2= v Gal® — WLt/ A, £ — Gal®

In terms of the functions z’,2z, the principal terms take the form
CET (2015 + vBapgh?Q, 1) (s B— 5 ) — ph*Q, ¢ (810 + (3.6)
Deya) 2% + Yapsd% (710 — 5 1aPhy, ) (@ — B —
(P; (7' - 1a'2%)Des
The restrictions (3.3) for the function 2z' become

duz> =0, p2'lB — @o {pTPH =0 (3.7

Minimizing the functional (3.6) with restrictions (3.7), we obtain the variational problems
(1.7), (1.8), (1.10). A minimum is attained on the functions

2= ';" v (Lal® — (PLat®I<pD) By, ¢ = o (£* — A%gY) + -
V(e — S TgV MR ¢ 4 | — % T €% Za =2 ¢ L fu

where the functions gt eV, f, 2,°, fo represent the solutions of the Euler equations corresponding
to the variational problem (3.6), and A,* and S¢7¥ are constant tensors given by the
formulas

A= %1p BLBLEDs  Su¥ =g (uevlh), %nep = (uLPg™H !

Thus at the second step of the variational-asymptotic method the law of motion is determined
up to and including terms of the order of gh/l . It can be shown that this is sufficient to
construct a theory including in the expression for the energy corrections of the order of h/R
and@ (k/l)* compared with unity, .

Substituting (3.2) into the variational equation (2.2) and retaining terms of the neces-
sary order, we obtain the variational equation (1.3) with the densities of internal energy
and work done by the forces of the form

= A (E) Y + - (ERE) Qo+ - OB — (3.9)
(2 + ) CEEER w0 Rpy + [CEEHad — 2(1 + v) Clo™yR +
5 Ci + 5 (T 0aqs + B*Pqufly, ¢ + C¥, (R, )
A=Q'r; + (0 4 oI F)1’ + RQ 4 R°Q, + Ny +
Ngo + (T4 - T %% i<t
R=(Pigdos T — (Pi, 12°*) 1a' — ae®® (ufy, g
a=reupn(2,% + ¢ k) EBY/(2 (ud),
R® = — (v/2) (Pix®os Tg' — v (Pi, 1 (e* — Spg%)os '
N= =] 0t + 5 (Pig (5% — WhEDKEY)Dos 7]

%= — Q%7 - 45 (PigPos T
Qz=|S'Fl -} (Pi>05u Qia'= <Pi§a>05’ Ti= <P|>
&= (P
In the homogeneous case the formula for @ (when y = 0) was obtained in /11/, and in the
framework of the linear theory of rectilinear rods, in fact, in /12/. However, neither in

/12/ nor in /1l/ was the possibility mentioned of the transformation carried out below, and
expression (3.9) was not reduced to its final simple form (1.6).

Transformation of the variational equation. We will simplify the expression for the
energy by carrying out a substitution of the functions sought. We will redefine the trans-
verse shear

Pe = Pa + Ae? Q, ¢
where A, is a constant tensor, selected, in what follows, in a special manner. Then the
flexural measure can be rewritten thus
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Qa=ﬁa—‘r'—7\ézﬂv,g§, §a=§a,g~1":§‘fh—®a° (3.10)

Taking into account (3.10) we can write the group of terms from the expression for the energy
density & (3.9) in the form

5 (R Qoo + = (J8pupp + Bo0paly, g + CBQ, Q1) = (3.11)

<

<R Dully + - (785, + 20,5 + B8R, 105,)
ToBj— 1 BoS 4 Jom, Eo = (o8 4 BYOLD 1 JATAE — 2 (EEeEy D

where we omit the divergent term (CEE*E® Ag%Q.Qs, t),s- Let us write the sum on the right-hand
side of (3.11) as a quadratic form in @, 4 HyQy 1
JoEpoipp + 20983560, 1 + E%8Q; 1 Qp, ;= JB (Fa + HIQy, ) (@~ B)
The tensors I, E*® and Ha"® are connected by the eguations
ToB == JOVHD, Eob—= TR HH{ (3.12)

Solving the first relation of (3.12) for the tensor H,® and substituting the result in the
same relation, we obtain

EoB _],(v;l)rvarpe (3.13)

We satisfy the relation {(3.13) by an appropriate choice of the tensor A,'? which we shall
assume to be symmetric. Substituting into (3.13) the values of the terms appearing in it as
given by (3.11), we obtain

(Y M) o= (Co8 — - GV B on) (3.14)

Expression (3.14) represents a system of three linear equations for the components of the
tensor iy . It can be shown that the determinant of (3.14) is not zero. Let us suppose
that the axes of the associated coordinate system £* coincide with the axes of the cross-
section S in which the tensor (EE*E®> is diagonal. Then (3.14) separates into three independ-
ent equations which yield the values of AP (1.9). Let us carry out another substitution
of the functions sought, namely §, — P
P = Pa + H';V'Qv. 4

Replacing in the flexural measure Q, (310)%, DY P, we obtain
§x=$a,§“"’:f§ﬁz—@1°"Hggy.;g (3.15}

The expression for the flexural measure will be the same as the earlier expression if we re-
define simultaneously the components of the radius vector [RT LU L Fl— Tv"Hwa_ We note
that within the accuracy used we can alsoc represent the substitution of the unknown functions
in the form

= B, (3.16)

We will now write the expression for the flexural measure with an accuracy of the order of
eh?/Rl and (h/R)e as follows:
Qo == Fa, 1 — T 1T — @ = Tli, g — W1 T =y T =

Let us.write the group of terms in the energy density connected with the torsion, in the form
1 1 1 e
T O+ 5 Oy =5 C(Q+ YTIO Ry

where we omit the divergent term (Y CC,R%.:,and make another substitution of the unknown func-
tions T4’ -+ T . ‘ ‘
Ty = Ty — Tg'eq. Y C1/C R (3.17M
i

with the vectors T, T, satisfying the relations
TR == + Oed) Ta'Tig==0aa -~ O ()
Using these relations we can show that the following relation holds:

QL YT Q=0+ 0(e2), Q=i o8, Rip
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From (3.17) it follows that
To' =o' — Tged Y CI/C R + TpieaC1/CR, 4 OK(h/l)Pe) (3.18)

Taking into account (3.16) and (3.18), we can write the expressions for the flexural measures
ﬁa and elongation of the y -axis in the form

Qo =0y — 0e YCIICQ, Do =Fhap — 00°
y=T— aomel,

After these transformations and substitutions of the unknown functions, the energy density
(3.9) is reduced (the bars are omitted) to the form (1.6), and the work done by external
forces A (apart from the divergent terms) to the form (3.9) with different values of the
effective forces R and R®

R =(Pg)est — Qtyed. YV CiIC — Qi xty'ed CiIC +
(P 18Des T V CIIC — ae®P (pfa,prd

R = — - (Px™Yas 5 — Q'usl® — v Py, (¢ — SEgas v +
0 v (s> — HE) -+ ‘;‘ AP (Py 3805 T i5D B
The work done by the forces at the ends ¢ =0, (= |I',| 1is the same in the improved theory

as in the classical theory. 1In statics the correctness of this step is guaranteed by the
Saint-Venant principle. 1In dynamics, the problem of the boundary conditions requires a special
investigation.

4., Effective coefficients of the one-dimensional theory. Below we give the
values of the coefficients J* and H*F and the corresponding minimizing functions of the
variational problem (1.8) in the one-dimensional case for certain transverse cross sections.

1°. a circle of radius r

6 v o v 1
S 8 8 g e 8
J“-p7 18 18%5, H%P = 12.Li-+ TTFv) 28
1 3
P (1 — B m) (205 — V72, 1)
2°. an annulus with radii rpand ry(rp<ry)

618 §(rs® 4 rd)?
8 __ ]
I¥=p Tr& = 3brydrgd + Trgt 8

v | 4 10r3rgd 4 ot
B = o |
v T (ry8 4 rg8) -+ 2038 (ry + rat) — Sdrydrat 1 sob
2(1+v) (ri® + ra%) (Try8 + 34riPre® + Trad) ]
3(r¥4rs /3.3 )
2= [_ 1+ Trit + 314r1’rz#')f' Tre® ( {1{7 - E?E.? -+ 3ryt 4 3"2’) ]Ea‘Pa'f'

v 1 rid 4 ridrd 4 gt 3ry?re?
=N ]__2_ EVE” T TS Bt 4 Tt ( E?E-p - E‘VE.V +and+ Srgz)] E“Qa, 13

3°. an ellipse ppaxygrpigt

3 3a? + b2 v 3 )
m=pg Sl Hu=gEarm LT“‘T
3 1 v
et (= ) » ]
1= g 0% + eang‘g
40 (a® 4 b?%) — 3 (3e® 4 b’)‘i"f.y — (38,2 — §;3) (a2 — b%)
gi=Fb I (50° 1 26%)
v | 111at+ 30022 4 3b¢
a=bh | —Eagarmy vt
(Blat — 2¢%b% + 3b4) ((a® — b%) (35, — En?) — 124% (202 4+ BY))
282" (3aF 1 b%) (548 - 26%) +
4(af—b?) (38,2 — B2+ 3a%)  bP—al
3 (3 + 0% + =76 ]

4°. A rectangle |&[<a, |EI<S?

5
In=pg 8] 2=8,9%+ ve, Q%
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R . 264
Hy=—gd+ oy | BT T7 0 ma —

@ N 1 kna 1282 1 (Zk—l)nb‘l
ED YRl e W

k=1 k=1

81=‘£‘51(1—%-%:—>

=
11 7,
e =35 b — g o'+ E (—1)**12b3 sh (kniEy/b) X
k=1

cos (knyb) [n¥k3ch (kna/b)]* + 2 (— 1)¥*1 1642 ch ((2k — 1) E,2a) X
k=1
st ({2k — 1) Ey/2a) (72 (2k — 1)* sh (2k — 1) 522}

The quantities J,,, H,, and the functions gs + e for the ellipse and rectangle are obtained by
making the subsitution s« & and the change of indices 1+ 2. The remaining components of
J*8, H*® are zero with respect to the principal axes of inertia,

o ,
57. An inhomogeneous rod of rectangular transverse cross section |i,|<a, |&|<Cb with

shear modulus p depending arbitrarily on the coordinate &

(pad? H
Ty = _r—-(p. K J:2=T<M>
(179 5 g3 1
L e v e I ks

Here the functions g, and f are found from the ordinary differential equations By, 1 = BE1 fa=
e/t The integration constants are fixed by the conditions Be(@=0 and «(uf, =0,

[}
6. A rod of rectangular cross section |§;|<as, |§|<? consisting of three rectangular
rods bounded together. Let the shear modulus g be a piecewise constant function of &

w=py, ~a < § < —¢

p=pg —e << p=p,c<E <
5 .5

]u=}lo—6"|s|“ur ]22=_P'1_6-|S|"n

Xy =1+ 8(@—1), 8=cla a=pyu

@ [3 (1—8%)— 10 (1—8%)4-15 (1—8)] -+ 8a20® + 20a (1 — 3%) 834 158 (1—82)2
= 8Ta+¥s(a—1) @5 — & —3) 3P

Note. The rod discussed in Sect.6 has the following flexural rigidities:
8 8
Bk = (1 + V) @b 1~ 8 (1 —a)], By =3 (1 +V)abu[t —8{1—a)]

The flexural and shear energy in the direction of the § axis are, respectively, <E&,E, e3/h2
and (EE %A ,;w Their ratio is characterized by the quantity

2 Soku
n=URE PNl

(4.1)

If the stress state is such that B~ (#/})? , then the energy of transverse shear has the
same order of smallness as the energy of flexure, and the transverse shear energy must be
included in the first approximation. Formula (4.1) shows that § becomes small when the shear
moduli have a large gradient, For example, the effect becomes substantial when a ~ 103, B~
10-% and for the stress states with A/l ~1/10.
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RIGIDITY IN THE ELASTOPLASTIC TORSION OF SIMPLE RODS”

M.IA. LEONOV and V.D. PEREDERII

Prismatic rods for which the trajectories of tangential stresses under
elastic deformation are close to the known trajectories of these stresses
in the limiting case of perfect plasticity, are considered. Attention is
given to the study of the rigidity of the elastoplastic torsion in the case
of perfect plasticity.

The problem of the pure torsion of prismatic inelastic rods occupies a special place
among the boundary value problems of mechanics of continuous media, even though it is the
simplest of its class; if we exclude the case in which the yield drop is present /1/, then the
torsicn will not be accompanied by relief of stress; the limiting case of perfectly plastic
torsion is statically determinable and can be studied using elementary methods. The appear-
ance of partial plastic deformation formally complicates the problem /2/. However, it is
usually the values of the deformation that are of practical interest and not the stresses. It
is the deformations that often set a limit to the admissible loads. It is clear that in this
context the torsional rigidity is of overriding interset. It can be determined very accurately
in an indirect manner, by passing the solution of the partial differential equation at the
unknown elastoplastic boundary. The elastic torsion of thin-walled and cylindrical rods when
there are no stress concentration foci is investigated in a fairly simple manner in /3/.
Plastic deformation reduces the sharpness of the stress concentration and thus widens the
range of applicability of the simplified methods of solving elastoplastic problems more effic-
iently, the higher the level of plastic deformations as compared with elastic deformations.

At the centre of the proposed simplification lies the idea of determining the tangential stress
trajectories at the periphery of the transverse cross-section in the region of maximum load
for elastic as well as the plastic materials; on the contour itself they are identical by
virtue of the boundary conditions (the contour is always a trajectory of tangential stresses).
The greatest difference between the trajectories under elastic and plastic deformations will
occur in the case of perfect plasticity. Nevertheless, the error in determining the torsional
rigidity when the actual tangential stress trajectories in the elastic stage are replaced by
the trajectories for a perfectly plastic material is practically nil for all singly connected
rods with a convex contour, and when parts of the contour are indented with the radius of
curvature of the indentations exceeding the distance to the nearest point of the branch of the
contour lying opposite /3/. The magnitude of this error represents "the measure of simplicty"
of the rod under torsion, and the upper limit of the error when determining the torsional rigidity
of the inealstic rods. The more plastic the material (i.e. the greater the plastic deforma-
tions), the smaller the error in determining the torsional rigidity; in the limiting case of
infinitely large deformations without reinforcement it tends to zero. The present paper deals
with the case of linear reinforcement, but the computations are carried out for perfect plastic:
ity.
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