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An asymptotically exact theory of isotropic Timoshenko-type rods is 
developed. The variational problem is formulated for the cross-section 
in order to calculate the transverse shear coefficients. Shear coeffic- 
ients are obtained for a series of transverse cross-sections. 

1. One-dimensional theory of rods. In classical theory a rod is modelled by a 
curve rwith a set of orthogonal reference vectors attached at each point, with one vector of 
each set tangential to r . The theory allows for four functionally independent degrees of 
freedom: three canponents r'(E) of the radius vector of the points on r (the small latin 
letters i,j,k take the values 1,2,3 and correspond to the projections on the Cartesian axes 
of the observer coordinate system, and E is a parameter on r) and six components of the 
reference vectors zai orthogonal to r (the small greek letters take the values 1,2)connected 
by the following five relations: 

rdrie= 8aR, rairi, g = 0 (1.1) 

where 6,, are the Kronecker deltas and the comma preceding E in the subscripts denotes differ- 
entiation with respect to E. The degree of freedom which exists when the set of reference 
vectors is defined, describes the relative rotation of the transverse cross-section. The 
curvatures oa and torsion oof the rod are given by the relations 

P 

r,s= - 6Pca 
I 1 
, -Gz. 8 = OaTi + oe$.T,z 

where ri denotes the unit vector tangent to r, s is the arc length along r , and the comma pre- 
ceding sin the subscripts denotes differentiation with respect to s. The following guantit- 
ies can be taken as the measures of the elongation, bending and torsion: 

v+s:.E--l), 4=(1-1_2~)'"o,-~w," 

Q=(1 + 2y)'/'o-0J0 

The superscript o denotes quantities in the undeformed state, and we use the 
curve r0 as the parameter 5 . The formulas for y,% and 52 are written in 
and r'(E) as follows: 

y =+(rf &ri, E - 1), &2,=r: ET*. E -a,', Q-&e+, trw -a0 

The variational equation of the one-dimensional theory of rods has the form 

arc length on the 
terms of 7,' (&) 

(1.2) 

(1.3) 

where 1 r. 1 is the rod arc length in the undeformed state, X and @are the kinetic and inter- 
nal energy density per unit length, A is the work done by external forces, and r' and Tag, are 
the functions varied and obeying the relations (1.1). 

In the classical theory of isotropic inhomogeneous rods (with centrally symmetric cross- 
section and even elastic properties) we have 

(1.4) 

Here <.> denotes the integral over the transverse cross-section, Ea are the Cartesian co- 
ordinates in the transverse cross-section, E is Young's modulus and p is the density of the 
material. To compute the torsional rigidity C we must solve the Saint-Venant problem at the 
cross-section ( p is the shear modulus and the comma preceding the greek subscripts denotes 
differentiation with respect to &") 
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CP= inf,+(g,= + Qe,=U)(g,a i- Q&G%=)> 

Here e,, are the Levi-Civita symbols (eu = e,, = 0, em = --e,, = 1). 

Formulas (1.4) were obtained for a homogeneous rod from the Kirchhoff hypothesis on plane 
flows /l/. They can be obtained by an asymptotic analysis of a three-dimensional energy funct- 
ional, retaining in the expression for the energy the principal terms only and neglecting 
corrections of the order of hlR,hll and e compared with unity /2/ where h is the diameter of 
transverse cross-section, R is the characteristic radius of torsional curvature, 1 is the 
characteristic scale of change in the stress state along the r-cd and 8 is the deformation 
amplitude (the quantities R, 1,~ are defined in /2/j. Below we construct a more accurate 
theory, in which the expression for the energy retains corrections of the order of h/R, hi1 and 
(h/l)’ compared with unity. 

In the improved theory the vectors zai are not assumed to be orthogonal to the vector 
Ti and two additional degrees of freedom are introduced, namely the transverse shear (P==&~= 
(this idea is due to S.P. Timoshenko /3/). The vectors zoi are of unit length and mutally 
orthogonal(~='r~e =&&just as in the classical theory. The measures of flexure and torsion are 
found in terms of the vectorsri(&Gi(&)by means of the formulas (1.2). The internal energy 
density contains, in the improved theory, apart from the classical terms, the crossterms con- 
necting the elongation with torsion, elongation with flexure, flexure with torsion and shear 
energy 

2@ = <E, y* + <EE=P> Q=Q, + CQ* + 2 [<ES=S=.) - (1.6) 

The cross term connecting the elongation with torsion exists only for naturally twisted 
rods (oO#O) and was first computed in /4/, while in /5/ it was obtained from the asymptotic 
representations. The quantity <EE=&) -2 (1 + y)C characterizing the interaction between the 
elongation and torsion is computed from the moduli of rigidity of'the classical theory <I?~=E@> 
and C . In contrast, the effect of transverse shear is connected with three conditional indep- 
endent characteristics of the rod, namely with the shear rigidities Jab. Below we show that 
the latter are obtained from the solution of the following variational problem at the cross- 
section: 

J=%=q8 = inf, <P (cp= + z,=) (cp= + z,=)> (1.7) 

The minimum in (1.7) is sought over all functions z(Ea) satisfying the restriction 

WY> = O,cp= are regarded as constant parameters. The transverse shear coefficients K=a = 

J=V<p) are, as a rule, of the order of unity, and the shear energy J=pq~=cpe represents formally 
the principal part of the energy. Therefore, in the first step of the variational-asymptotic 
method /6/ we must minimize the shear energy in accordance with the hypothesis of plane flows 
(P= =0 also in the first approximation. However, cases are possible (one such case is discus- 
sed below) when K”@el, and the theory derived below, regarded as improved, becomes a first 
approximation theory. 

The rods which are curvilinear in the undeformed state are characterized by another five 
parameters, i.e. four components of the non-symmetric tensor Da@ and scalar C,, connected with 
the cross relation between the elongation and flexure, and flexure and torsion. To find D=fi 
we must obtain the coefficients of the quadratic form J=kp=cps $- BaQ=Be f Caf%=8p representingthe 
minimum value of the functional 

Here (P= and 0= are constant parameters and ~=a are quadratic polynomials. The minimum is 
sought over allz satisfying the restriction <pzg=> = O.The tensor D=P is determined interms 
of the coefficients of the quadratic form JW,B@, C=b from the formulas 

Da8 = (2 + v) (E&=58) + (E) Ha’, H: = l/zJ;;‘BVB j- h=S (1.9) 

h” = I/* (E&&-’ (C” - V4J$)B=‘BB’), AZ2 = ‘I, <E&E,>-’ 

(P - 1/4J$)B=~Bf’2)1 i’.‘l = AZ’ = <E&E=)-’ (Cl* _ l/,Jb-,“Ba’B@~) 

where Jb$ is a tensor inverse to J=b(Jb$Jm = 6=v). To find the scalar C,, we must solve the 

problem of the minimum of the functional 

0 (z,== + 2vgy + 2p (zc,, i3) + 4Lgg) w=, f3’ + vs=w - 
2~ k.= + e&Y) 6 

(1.10) 



where 9 is the smallest element in the problem of torsion (1.5). The minimum is sought over 
all za satisfying the restriction (3.3). Let us denote the minimum value of the functional 
(1.10) by J. Then c, is given by the formula 

C, = <Ego> + J (1.11) 

Just as in the case of shells /7, 0/, the cross term connecting the elongation with flex- 
ure can be essential in determining the displacements to a first approximation. Formulas 
(1.6)-(1.11) are obtained assuming that only the shear modulus changes in transverse direct- 
ions and Poisson's ratio is constant. Note that the asymptotic theory of rods, with trans- 
verse shear taken into account, was also constructed in /9/. 

2. The three-dimensional problem. We consider, in the Cartesian zi coordinate 
system, an elastic isotropic rod occupying in its undeformed state a volume V, formed by the 
motion along the rod axis r0 of a plane figure S perpendicular to r0 at every point of the 
axis. The centre of gravity of S lies on the rod axis. The rod is acted upon by the time- 
dependent surface forces PI and mass forces Fiwhich are assumed to be dead. Let us introduce 
in the volume T', an associated coordinate system Ea, E9 = f according to the formulas 

soi (E, 5") = fl' (E) + rlzoi (8 5" (2.1) 

Here ii= fl'(g)is the equation of the rod axis, r,,E is the arc length along the axis, 

‘tl 
Oi and zlOi are the components of two vectors which form, together with ?'= r,toi an ortho- 

gonal set of vectors. We assume that S is centrally symmetric. This means that in addition 
to every point with coordinates E" it contains a point with coordinates f". The distribution 
of the inhomogeneities over the cross-section will aso be assumed symmetric (i.e. Young's 
modulus E(S=) and shear modulus I" (f") are even functions of the coordinates fa) andPoisson's 
ratio v will be assumed constant. 

The equations describing the deformation of the rod follow from the variational equation 

&I-L)&=O. I='&l/&dE (2.2) 
1. 0 

A =+[h(g”Obe,b)2 + 2pg~bg”‘de,cebd]- ~ppc’k+, g"=det'l/ gmb 11 

Here <.)es denotes the integral over the boundary of s,s'(p,t) is the law of motion of the 

body, vi = ~~11, A is the difference between the internal and kinetic energy, L is a functional 

determining the work done by external mass and surface forces, and g,,L", pb are components of 
the metric tensor. The components of the strain tensor are determined fran the law of motion 
using the formula 

%b = +(&Xi, b--&b) (2.3) 

The problem in question reduces to replacing the three-dimensional problem of the theory of 
elasticity by the appropriate "one-dimensional" 
itudinal coordinate' 5 and time t only. 

problem containing the functions of the long- 
The one-dimensional theory can be regarded as a 

result of the passage to the limit h+O. We will construct the one-dimensional theory using 
the variational-asymptotic method /6/. 

3. Asymptotic analysis of the three-dimensional problem. Transformation of 
the expression for the energy. We will write Uin the form of a sum of three positive definite 
quadratic forms, i.e. 
energy ‘U, 

the longitudinal energy uII, the transverse energy u, and the shear 

u= ufl+ u,i- u, 
U u = l/%E ,, egg2, U, = l/~EuBva (ha -t E,B~SB + J%& (a, B-q, 6) 

UC = ‘/sG@ (eas + Less) (a - P) 

The symbol (a, p+y,6)describes the expression within the preceding brackets in which the sub- 
scripts a, fi have been replaced by 7.6. The cwponents of the "two-dimensional" tensors of 
elastic moduli are expressed in terms ofthe metrictensor components, Lam6 paraemters 
and Poisson's ratio v 

&,p 
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c”B = + [g’=Yf@ + (2h” - Pa) g”=$ E& = - & g;(&, 

E,= %#a& %g%7 

ga3a~,gQ g%%=- + + 1 Wg,” - $‘) g-q g’fl* 

E=m = hg*=8g’va + p (g”“Vg’86 + g”Bvg’a6) 

E a6 = $$T .L?& + Jf$- &&I3 
Remembering that the metric tensor components are given in the E" coordinate system by the 
formulas 

and neglecting terms of the order of (hi R)e compared with unity, we obtain the following ex- 
pressions for the components of the two-dimensional elastic moduli: 

External forces. 
We will assume that the external surface and mass forces are of the order of 

and the mass forcesF* are constant over the cross-section S. 
Let us assume that the relation Pi(E=) at the end faces can be written in the form Pi = 

p (C, + Cl=Ea)where Ct,CI= = const.We begin the asymptotic analysis of the three-dimensionalprobler 
by considering the static case. 

First approximation. As was shown in /lo/, the law of motion to a first approximation 
has the form 

t'(p,E)= r'(E) -L /a=‘<= + hy', 5" = h-'E= (3.1) 

y, =r=& = - v tv -r-+x=fih%) , y = ti yi = ghQ 

where g is the minimizing element in the variational problem (1.5). Substituting (3.1) into 
the expression for the energy and integrating over the transverse cross-section, we obtain 
the formula for @ (1.4). Subsequent terms of the expansion (3.1) are of the order of ehll 
and made only a small contribution to the energy. 

Second approximation. In accordance with the general scheme of the variational-asymptotic 
method we write the law of motion in the form 

zi (E=, 5) = r' + ht='c= + hyi + hz', y' = t' y + r=iya (3.2) 

The arbitrariness in the choice of ri and t=' makes it possible to impose the following restri- 
ctions on zi: 

<pi) = 0, <pz=,e) e=@ .= 0, <pzg=> = 0 (2, = T,’ zi, z = t’z*) (3.3) 

where the symbol I@ denotes differentiation with respect to c8 . Let us substitute (3.2) in- 
to the expression for the strain tensor components (2.3). Neglecting quantities of the order 
of hs/ Rl anda compared with unity, we obtain 

c3= = '/z (2~ + 2hQ&= + 2h%=‘Q#gaf + 2h%“a2<=5” + 2hT2yi, e + 2h%‘z*, 5) (3.41 

s===l/, [hQ(gl=+~vew)f~=+ h~v~~,~y~~=+~~=+h~~~,~~i~=+hy~~~~=fh~=i~i.~~~ E=E=Y(=IE) A.'(=IB) 
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Let us separate, from the energy functional, the terms containing z and z, , principal in the 

asymptotic sense. By (3.4) the terms have the form 

<l/zCw(za~~ + &p.fhe61,~)(al B-v ~~-MQ,E(~Ic~ + (3.5) 

pep) 2” + ‘/y6afi (21 a + va + hh, E) (a - B)> - 
(Pi (22 -t ZdZa))m 

Let US carry out the following substitution of the function sought: 

In terms of the functions z',z, the principal terms take the form 

<l/JZ&d(zat~ + v&p@?~) (a,B-vl ~)-~2~,~(gb + 

CQ,) za + %~6~fl k; a - + x&%, E) (a -+ IV> L 

(Pi (z’z’ +- ‘FaiP)>es 

The restrictions (3.3) for the function z' become 

(3.6) 

</AZ’> = 0, <pz’V) - cpa <PIP69 = 0 (3.7) 

Minimizing the functional (3.6) with restrictions (3.7), we obtain the variational problems 
(1.7), (1.8), (1.10). A minimum is attained on the functions 

z=+&ta- <~~a~0>/<~>)hy.E-(Pa(6a - &?) -i- (3.8) 

v (eY - S,."gT) h*&, t +- f - x,6 <f&‘> p* Za = Za”h’n, F -b- ~CI 

where the functions gr, eV, f,z,“, fa represent the solutions of the Euler equations corresponding 
to the variational problem (3.6), and A,.‘= and S,'V are constant tensors given by the 
formulas 

A: = xtg <@?&=>, S,.” = x*8 <peQ>t xq = (p&?>-’ 

Thus at the second step of the variational-asymptotic method the law of motion is determined 
up to and including terms of the order of &I1 . It can be shown that this is sufficient to 
construct a theory including in the expression for the energy corrections of the order ofh/R 
and (h/l)’ compared with unity. 

Substituting (3.2) into the variational equation (2.2) 'and retaining terms of the neces- 
sary order, we obtain the variational equation (1.3) with the densities of internal energy 
and work done by the forces of the form 

cD=+-(E)~~++<~~~~)S2&+ +%-- (3.9) 

(2 + VI <mf?> oopnsv + [<Jma> - 2 (1 + 4 Cl dv-2 + 

+ c&f & + + (PBWp~ + ~=$&3. E + C@&, &3. t) 

A = Qiri + (Qia 4 o$I@F,) zai + KR + R=a, + Ny + 

NQq, + (Tiri -;- Tp-r,')l[$" 

R= <Pig>8sz"- <Pi,$a>~'-a@ <pfa,t3k> 

a = hi3 tr (g.” + GEp) t?>/P <p>h 
FP = - (v/2) (P,p~)~s rg’ - v (Pi, E (ea - Sgy)),s d 

N = - v i QiaTai + + <h,:t t&S - <PLP>/<P>)>~~ +] 

N” = - Q,‘? + Ai? (Pi&es 7” 

Q’ = 1 S ( F’ + <P’>as, Qi” = <P,E”>es, Ti = (Pi) 

Ti” = (P,& 

In the homogeneous case the formula for@(when y = 0) was obtained in /ll/, and in the 
framework of the linear theory of rectilinear rods, in fact, in /12/. However, neither in 
/12/ nor in /ll/ was the possibility mentioned of the transformation carried out below, and 
expression (3.9) was not reduced to its final simple form (1.6). 

Transformation of the variational equation. We will simplifytheexpression for the 
energy by carrying out a substitution of the functions sought. We will redefine the trans- 
verse shear 

'Pa = G + &.YQV,~ 
where ?.,:v is a constant tensor, selected, in what follows, in a special manner. Then the 
flexural measure can be rewritten thus 
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sz, = a + A;;‘,& gg’ i-=& = (PG. g - Tf ;t(, - CL&o (3.10) 

Taking into account (3.10) we can write the group of terms from the expression for the energy 
density @ (3.9) in the form 

-&((EsaSe,)%& t- -+( J"K& + 2rqa6a5, ef E"5QZ,$,,;) 

TM+-& 
I 

BUS+ f%$ E@=C=5 f B@@ + J~~~~~-2(E~("~y>~~' 

where we omit the divergent term ((EE"Ea> hg%&%,&~. Let us write the sum on the right-hand 
side of (3.11) as a quadratic form in va + H,..vQ~,,: 

~=fiy~ij~-i- 2rqiabQ,E f E~~6a,gQ8,e=-~~(Ta -t- K?&,E) (CC-B) 

The tensors rap, Eae and Ha;8 are connected by the equations 

pe=@F.&?, B~=J@ff;YK~? (3.121 

Solving the first relation of (3.12) for the tensor H,..'fi and substituting the result in the 
same relation, we obtain 

EUB-, J&++x~ (3.13) 

We satisfy the relation (3.131 by an appropriate choice of the tensor h,:J which we shall 
assume to be symmetric. Substituting into (3.13) the values of the terms appearing in it as 
given by (3.11), we obtain 

(~'"~)a$' =_+z5_+J~;+.PaBPn) (3.14) 

Expression (3.14) represents a system of three linear equations for the components of the 
tensor hpR . It can be shown that the determinant of (3.141 is not zero. Let us suppose 
that the axes of the associated coordinate system g= coincide with the axes of the cross- 
section S in which the tensor (.!?E??> is diagonal. Then (3.14) separates into three independ- 
ent equations which yield the values of A,@ (1.9). Let us carry out another substitution 
of the functions sought, namely & +va 

$=rpa+ Z&., 

Replacing in the flexural measure C&(3.10)@= by %zbt we obtain 

A-%,E -S!& -ozD - His&;, (3.15) 

The expression for the flexural measure will be the same as the earlier expression if we re- 
define simultaneously the components of the radius vector ri: ri+ t', pi = ~i_~~R~v$'&. We note 
that within the accuracy used we can also represent the substitution of the unknown functions 
in the form 

r"=ik-r'Hw- V Y (3.161 

We will now write the expression for the flexural measure with an accuracy of the order of 
&Z/RI and (h/R)% as follows: 

~or_=~,a_-tf,r~--o=~Tb,E-Oaa' 7" cifE,?iT+fz=~% 

Let us-write the group of terms in the energy density connected with the torsion, in the form 

-&X2*+ +C,st3,=+C@t I/CIICP.$ 

where we omit the divergent term (I/CC,@) ,~,and make another substitution of the unknown func- 
tions raid ?,i 

r, i =t ‘ib’ - i&.$ I/qjr P (3.17) 

with the vectors 7, ?a' satisfying the relations 

?+$a = ?@ + 0 (E’), ?a’?r@ = 6,6 -i- 0 (e) 

Using these relations we can show that the following relation holds: 

Qj- -r/e,ica,,= H + O(G), G=+Bi',,$%B 
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From (3.17) it follows that 

rai=F,i - qez. 
-- 

I/C&h2 + +!~C,lCZi,~ + OK(ltWe) (3.18) 

Taking into account (3.16) and (3.18), we can write the expressions for the flexural measures 

a= and elongation of the ~-axis in the form 

After these transformations and substitutions of the unknown functions, the energydensity 
(3.9) is reduced (the bars are omitted) to the form (1.6), and the work done by external 

forces A (apart from the divergent terms) to the form (3.9) with different values of the 
effective forces R and Ra 

The work done by the forces at the ends E = 0, E = 1 r o 1 is the same in the improved theory 
as in the classical theory. In statics the correctness of this step is guaranteed by the 
Saint-Venant principle. In dynamics, the problem of the boundary conditions requiresaspecial 
investigation. 

4. Effective coefficients of the one-dimensional theory. Below we give the 
values of the coefficients I@ and H@ and the corresponding minimizing functions of the 
variational problem (1.8) in the one-dimensional case for certain transverse cross sections. 

lo. A circle of radius r 

2O. An annulus with radii rl and r, (rl < r,) 

3 (r? + r2*) 
Z== 

[ - ’ + 7r# + 34r+,’ + 7r8 
’ 3r,+.? 

( 
-- 

EVE, 
E’q, + 3rp + 3r,* 

)I 
V%,+ 

3 
~aZbz-((t-++b4] 

3 = g,e i e@pk 

4.9 (3 y- 
aI= t 

b’) - 3 (36 + b’) f”f, - (3ft - El*) (a* - b’) 
-40' 

'l = h+ 1 
llia’+ 30a’b”+36’ EYE,+ 
I&* (50’+ 26’) 

(314 - Mb’ + 36’) ((a* - b’) (3h’ - t’) - i?d (2~’ + b’)) 
48~~ (30’ + b’) (5~9 + 26’) + 

4 (a%- b*) (3F,9* - El* + 3~“) 
3 (3d + b’) 

b’ - a’ I 
16 1 

4O. A rectangle I &I I< % I & 1 d b 

Ill= PL-T; 5 ISI, 2 = 8,e + Ve,QT~ 
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cm (kn~~/b)[nW:ch (kna/b)]-I+ 
r 

,(- l)'+l 16o*b ch ((2k - 1) F&la) X 

k=l 

sm ((2k - l)F,~/Za)[n~(Zk - 1)Jsh(2k - l)b:2p]-* 

The quantities J_,H,, and the functions B, , 
making the subsitution (~-b 

e, for the ellipse and rectangle are obtained by 
and the change of indices i-2. 

I@, Ha@ 
The remaining components of 

are zero with respect to the principal axes of inertia. 

so. An inhomogeneous rod of rectangular transverse cross section /&I<=, l&i.< b with 
shear modulus pdepending arbitrarily on the coordinate &: 

Here 

Ph. 

rods 

I,1 z 
(W1 

(P*‘!P> ’ 12 = -g tp> 

2 = g,@, &=*f-El, g*=-&+p++-e, 
the functions p+ and f are found from the ordinary differential equations fi,,,==& f,l= 
The integration constants are fixed by the conditions p+(a)= o and cclf, = 0. 

6O. A rod of rectangular cross section 1~~1<0, 
bounded together. Let the shear modulus p be a 

P = p,, --a < & \i -c; 

I &I<b, consisting of three rectangular 

piecewise constant function of &: 

x11 = 
=(3(i-W-10 (l-@)fi5(1-5)] C&Wf2oa(l -a')@+ 15l3(i-68)' 

5 [a+%(~- 1)(415* -W- 3)b]a 

Note. The rod discussed in Sect.6 has the following flexural rigidities: 

@bF;,> = $(I +~)a%[i -P(I -a)]. <FE&?> = &+v)o~~L[~-&@] 

The flexural and shear energy in the direction of the & axis are, respectively, &,!&th' 

and tEE,SI+8PlhVJlI. Their ratio is characterized by the quantity 

(4.1) 

If the stress state is such that 5-@/l)* , then the energy of transverse shear has the 
same order of smallness as the energy of flexure, and the transverse shear energy must be 
included in the first approximation. Formula (4.1) shows that (3 becomes small whenthe shear 
moduli have a large gradient. For example, the effect becomes substantial when P-IO-~, 5- 
IO-* and for the stress states with h/l-l/10. 
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RIGIDITY IN THE ELASTOPLASTIC TORSION OF SIMPLE RODS* 

M.IA. LBONOV and V.D. PERBDBRII 

Prismatic rods for which the trajectories of tangential stresses under 
elastic deformation are close to the known trajectories of these stresses 
in the limiting case of perfect plasticity, are considered. Attention is 
given to the study of the rigidity of the elastoplastic torsion in the case 
of perfect plasticity. 

The problem of the pure torsion of prismatic inelastic rods occupies a special place 
among the boundary value problems of mechanics of continuous media, even though it is the 
simplest of its class; if we exclude the case in which the yield drop is present /l/, thenthe 
torsion will not be accompanied by relief of stress; the limiting case of perfectly plastic 
torsion is statically determinable and can be studied using elementary methods. The appear- 
ance of partial plastic deformation formally complicates the problem /2/. However, it is 
usually the values of the deformation that are of practical interest and not the stresses. It 
is the deformationsthatoften set a limit to the admissible loads. It is clear that in this 
context the torsional rigidity is of overriding interset. It can be determined very accurate11 
in an indirect manner, by passing the solution of the partial differential equation at the 
unknown elastoplastic boundary. The elastic torsion of thin-walled and cylindrical rods when 
there are no stress concentration foci is investigated in a fairly simple manner in /3/. 
Plastic deformation reduces the sharpness of the stress concentration and thus widens the 
range of applicability of the simplified methods of solving elastoplastic problems more effic- 
iently, the higher the level of plastic deformations as compared with elastic deformations. 
At the centre of the proposed simplification lies the idea of determining the tangentialstress 
trajectories at the periphery of the transverse cross-section in the region of maximum load 
for elastic as well as the plastic materials ; on the contour itself they are identical by 
virtue of the boundary conditions (the contouris always a trajectory of tangential stresses). 
The greatest difference between the trajectories under elastic and plastic deformations will 
occur in the case of perfect plasticity. Nevertheless, the error in determining the torsional 
rigidity when the actual tangential stress trajectories in the elastic stage are replaced by 
the trajectories for a perfectly plastic material is practically nil for all singly connected 
rods with a convex contour, and when parts of the contour are indented with the radius of 
curvature of the indentations exceeding the distance to the nearest point of the branch of the 
contour lying opposite /3/. The magnitude of this error represents "the measure of simplicty" 
of the rodundertorsion, and the upperlimitoftheerrorwhen determining the torsional rigidity 
of the inealstic rods. The more plastic the material (i.e. the greater the plastic deforma- 
tions), the smaller the error in determining the torsional rigidity; in the limiting case of 
infinitely large deformations without reinforcement it tends to zero. The present paper deals 
with the case of linear reinforcement, but the computations are carried out for perfectplastic 
ity. 
*Prikl.Matem.Mekhan.,47,6,1025-1029,1983 


